Excel линия тренда корреляция

Excel – это эффективный инструмент для статистической обработки данных. И определение корреляций является очень важной составляющей этого процесса. Программа имеет весь необходимый инструментарий для осуществления расчетов такого плана. Сегодня мы более детально разберемся, что нам нужно для осуществления анализа этого типа.

Содержание

  1. Что представляет собой корреляционный анализ
  2. Корреляционный анализ в Excel — 2 способа
  3. Как рассчитать коэффициент корреляции
  4. Способ 1. Определение корреляции с помощью Мастера Функций
  5. Способ 2. Вычисление корреляции с помощью пакета анализа
  6. Как построить поле корреляции в Excel
  7. Диаграмма рассеивания. Поле корреляции

Что представляет собой корреляционный анализ

Простыми словами, корреляция – это связь между двумя явлениями. В свою очередь, под корреляционным анализом подразумевают выявление этой связи. Очень частое утверждение гласит, что корреляция – это зависимость между разными объектами, но на деле это неточное определение. Ведь существует множество изображений, которые показывают связь между явлениями, которые никак не могут быть зависимы друг от друга или одного третьего фактора, который влияет на них.

Для определения зависимости используется другой тип анализа, который называется регрессионным.

Величина, определяющая степень выраженности взаимосвязи, называется коэффициентом корреляции. Это единственная величина, которая рассчитывается корреляционным анализом по сравнению с регрессионным. Возможные вариации коэффициента корреляции могут быть в пределах от -1 до 1. Если это число положительное, взаимосвязь между динамикой изменения значений прямая. Если же отрицательное, то увеличение числа 1 приводит к аналогичному уменьшению числа 2. Если число меньше единицы по модулю, то корреляция неполная. Например, увеличение числа 1 на единицу приводит к увеличению числа 2 на 0,5. В таком случае коэффициент корреляции составляет 0,5. Если же коэффициент корреляции составляет 0, то взаимосвязи между двумя переменными нет.

Интересный факт: корреляции делятся на истинные и ложные. То есть, иногда то, что графики идут в одинаковом направлении, может быть чистой случайностью, а не закономерным следствием воздействия одной переменной на другую или влияния общего фактора на обе переменные. В узких кругах довольно популярны картинки, где коррелируют между собой абсолютно не связанные явления. Вот некоторые примеры:

  1. Количество человек, которые стали утопленниками в бассейнах, четко коррелирует с количеством фильмов, в которых Николас Кейдж был актером.
  2. Количество съеденной моцареллы и количество человек, которые получили докторскую степень, также коррелирует на протяжении 2000-2009 годов. Наверно, действительно, моцарелла как-то влияет на мозг и стимулирует желание совершать научные открытия.
  3. Почти во всех случаях средний возраст женщин, которые получили статус «Мисс Америка» коррелирует с количеством людей, которые погибли от нахождения в горячем паре.
  4. Число людей, которое погибло в результате дорожно-транспортного происшествия, четко коррелирует с количеством сметаны, которое съедают люди.
  5. Мало кто знает, что чем больше курятины человек ест, тем больше сырой нефти импортируется в мире. Правда, это тоже пример ложной корреляции. Кстати, импорт сырой нефти родом из Норвегии тесно связано с количеством людей, которые погибли в результате столкновения автомобиля с поездом. Причем в этом случае корреляция почти 100 процентов.
  6. А еще маргарин негативно влияет на статистику разводов. Чем больше людей, которые проживали в штате Мэн, потребляли маргарина, тем выше была частота разводов. Правда, здесь еще может быть рациональное зерно. Ведь частота потребления маргарина имеет обратную корреляцию с экономическим положением в семье. В свою очередь, плохое экономическое положение в семье имеет непосредственную связь с количеством разводов. И это уже доказано научно. Так что кто знает, может, эта корреляция и не является такой ложной. Правда, никто этого не перепроверял.
  7. Количество денег, которое правительство США тратит на развитие науки, космоса и технологий, имеет тесную связь с количеством самоубийств, проведенных в форме повешения или удушения.

Ну и наконец, еще один пример ложной корреляции – чем больше сыра люди едят, тем больше людей умирает из-за того, что они запутываются в своих простынях.

Поэтому несмотря на то, что корреляция является эффективным статистическим инструментом, нужно учиться отфильтровывать истинные взаимосвязи между явлениями и ложные. Иначе исследование может получить такие интересные результаты. А теперь переходим непосредственно к тому, как проводить корреляционный анализ в Excel.

Корреляционный анализ в Excel — 2 способа

Вычисление коэффициента корреляции осуществляется двумя способами. Первый – это использование Мастера функций, который позволяет ввести формулу КОРРЕЛ. Второй инструмент – это пакет анализа, требующий отдельной активации.

Как рассчитать коэффициент корреляции

Давайте продемонстрируем механизм получения коэффициента корреляции на реальном кейсе. Допустим, у нас есть таблица с информацией о суммах продаж и рекламу. Нам нужно понять, в какой степени количество продаж и количество денег, которые были использованы на продвижение, взаимосвязаны.

Способ 1. Определение корреляции с помощью Мастера Функций

Функция КОРРЕЛ – один из самых простых методов, как можно реализовать поставленную задачу. В своем общем виде этот оператор имеет следующий вид: КОРРЕЛ(массив1;массив2). Как же ее ввести? Для этого нужно осуществлять следующие действия:

  1. С помощью левой кнопки мыши выделяем ту ячейку, в которой будет находиться получившийся коэффициент корреляции. После этого находим слева от строки формул кнопку fx, которая откроет инструмент ввода функций. Как построить график корреляции в Excel
  2. Далее выбираем категорию «Полный алфавитный перечень», в котором ищем функцию КОРРЕЛ. Как видно из названия категории, все названия функций располагаются в алфавитном порядке. Как построить график корреляции в Excel
  3. Далее открывается окно ввода параметров функции. У нас два основных аргумента, каждый из которых являет собой массив данных, которые сравниваются между собой. В поле «Массив 1» указываем координаты первого диапазона, а в поле «Массив 2» – адрес второго диапазона. Для ввода данных массива, используемого для расчета, достаточно выделить нажать левой кнопкой мыши по соответствующему полю и выделить правильный диапазон. Как построить график корреляции в Excel
  4. После того, как мы введем данные в аргументы, нажимаем кнопку «ОК», чем подтверждаем совершенные действия.

После выполнения описанных выше шагов мы видим в ячейке, выбранной нами на первом этапе, коэффициент корреляции. В нашем примере он составляет 0,97, что указывает на очень сильно выраженную взаимосвязь между данными двух диапазонов. Как построить график корреляции в Excel

Способ 2. Вычисление корреляции с помощью пакета анализа

Также довольно неплохой инструмент для определения корреляции между двумя диапазонами – пакет анализа. Но перед тем, как его использовать, нам надо его включить. Для этого выполняем следующие действия:

  1. Нажимаем на кнопку «Файл», которая находится в левом верхнем углу сразу возле вкладки «Главная». Как построить график корреляции в Excel
  2. После этого открываем раздел с настройками. Как построить график корреляции в Excel
  3. В меню слева переходим в предпоследний пункт, озаглавленный, как «Надстройки». Делаем левый клик по соответствующей надписи. Как построить график корреляции в Excel
  4. Открывается окно управления надстройками. Нам нужно переключить поле ввода, находящееся внизу, на пункт «Надстройки Excel» и нажать на «Перейти». Если это поле уже находится в таком положении, то не выполняем никаких изменений. Как построить график корреляции в Excel
  5. Затем включаем пакет анализа в настройках. Для этого ставим соответствующую галочку и нажимаем на кнопку «ОК». Как построить график корреляции в Excel

Все, теперь наша надстройка включена. Теперь мы во вкладке «Данные» можем увидеть кнопку «Анализ данных». Если она появилась, то мы все сделали правильно. Нажимаем на нее. Как построить график корреляции в Excel

Появляется перечень с выбором разных способов анализа информации. Нам следует выбрать пункт «Корреляция» и нажать на «ОК». Как построить график корреляции в Excel

Затем нам нужно ввести настройки. Основное отличие этого метода от предыдущего заключается в том, что нам нужно вводить полностью диапазон, а не разрывать его на две части. В нашем случае, это информация, указанная в двух столбцах «Затраты на рекламу» и «Величина продаж».

Не вносим никаких изменений в параметр «Группирование». По умолчанию выставлен пункт «По столбцам», и он правильный. Эта настройка определяет, каким образом программа будет разбивать данные. Если же наши данные были бы представлены в двух рядах, то надо было бы изменить этот пункт на «По строкам».

В настройках вывода уже стоит пункт «Новый рабочий лист». То есть, информация о корреляции будет располагаться на отдельном листе. Пользователь может настроить место самостоятельно с помощью соответствующего переключателя – на текущий лист или в отдельный файл. Проверяем, все ли настройки были введены правильно. Если да, подтверждаем свои действия нажатием на клавишу «ОК».

Как построить график корреляции в Excel

Поскольку мы оставили поле с данными о том, куда будут выводиться результаты, таким, каким оно было, мы переходим на новый лист. На нем можно найти коэффициент корреляции. Конечно, он такой же самый, как был в предыдущем методе – 0,97. Причина этого в том, что вычисления производятся одинаковые, исходные данные мы также не меняли. Просто разными методами, но не более. Как построить график корреляции в Excel

Таким образом, Эксель дает сразу два метода осуществления корреляционного анализа. Как вы уже понимаете, в результате вычислений итог получится таким же. Но каждый пользователь может выбрать тот метод расчета, который ему больше всего подходит.

Как построить поле корреляции в Excel

Итак, давайте теперь разберемся, как построить поле корреляции. Для начала нужно разобраться, что это вообще такое. Под корреляционным полем подразумевается фактически график корреляции. Главное требование к такой диаграмме – каждая точка должна соответствовать единице совокупности. Поле корреляции поможет установить более глубокие связи и проанализировать данные более качественно. Для начала нам нужно найти коэффициент корреляции между двумя диапазонами, используя функцию КОРРЕЛКак построить график корреляции в Excel

После того, как мы это сделали, мы теперь можем сделать поле корреляции. Для этого выполняем следующие действия:

  1. Переходим во вкладку «Вставка» и там находим вариант диаграммы «точечный график». Как построить график корреляции в Excel
  2. После того, как мы его добавили, нажимаем по будущему полю корреляции правой кнопкой мыши и вызываем контекстное меню. Далее нажимаем на «Выбрать данные». Как построить график корреляции в Excel
  3. Далее выбираем наш диапазон в качестве источника данных. После этого подтверждаем свои действия нажатием клавиши ОК. Все остальные действия программа выполнит самостоятельно. Как построить график корреляции в Excel

Этот график можно построить не только на основе корреляции, определенной через функцию КОРРЕЛ.

Диаграмма рассеивания. Поле корреляции

До сих пор часть пользователей сидит на старой версии Word. Как построить корреляционное поле в этом случае? Для этого существует специальный инструмент, который называется мастером диаграмм. Найти его можно на панели инструментов по специфическому изображению диаграммы. Если навести на эту иконку мышкой, то появится всплывающая подсказка, которая поможет нам убедиться в том, что это действительно мастер диаграмм.

Как построить график корреляции в Excel

После этого появится диалоговое окно, в котором нам надо выбрать точечный тип диаграммы. Видим, что логика действий в старых версиях офисного пакета в целом остается той же самой, просто немного другой интерфейс. Немного правее мы можем увидеть, как будет выглядеть точечная диаграмма и выбрать подходящий вид, а также прочитать описание этого типа диаграммы. После этого нажимаем на кнопку «Далее».

Как построить график корреляции в Excel

Затем выбираем диапазон данных, и наша линия появляется. После этого можно добавить линию регрессии к графику. Для этого необходимо сделать клик правой кнопкой мыши по одной из точек и в появившемся перечне найти «Добавить линию тренда» и сделать клик по этому пункту. Как построить график корреляции в Excel

Далее выставляем настройки. Нас интересует тип «Линейная», а в окне параметров нужно поставить флажок «Показывать уравнение на диаграмме».Как построить график корреляции в Excel

После подтверждения действий у нас появится что-то типа такого графика.

Как построить график корреляции в Excel

Как видим, возможных вариантов построения может быть огромное количество.

Оцените качество статьи. Нам важно ваше мнение:

Содержание

  1. Корреляционно-регрессионный анализ в MS EXCEL
  2. Корреляционно-регрессионный анализ в Excel: инструкция выполнения
  3. Регрессионный анализ в Excel
  4. Корреляционный анализ в Excel
  5. Корреляционно-регрессионный анализ
  6. Как построить график корреляции в excel
  7. 2 способа корреляционного анализа в Microsoft Excel
  8. Суть корреляционного анализа
  9. Расчет коэффициента корреляции
  10. Способ 1: определение корреляции через Мастер функций
  11. Способ 2: вычисление корреляции с помощью пакета анализа
  12. Регрессионный анализ в Microsoft Excel
  13. Подключение пакета анализа
  14. Виды регрессионного анализа
  15. Линейная регрессия в программе Excel
  16. Разбор результатов анализа
  17. КОРРЕЛ (функция КОРРЕЛ)
  18. Описание
  19. Синтаксис
  20. Замечания
  21. Пример
  22. Корреляционно-регрессионный анализ в Excel: инструкция выполнения
  23. Регрессионный анализ в Excel
  24. Корреляционный анализ в Excel
  25. Корреляционно-регрессионный анализ
  26. Диаграмма рассеяния в Excel и сферы ее применения
  27. Что показывает диаграмма рассеяния
  28. Построение диаграммы рассеяния в Excel
  29. Коэффициент парной корреляции в Excel
  30. Расчет коэффициента корреляции в Excel
  31. Матрица парных коэффициентов корреляции в Excel
  32. Поле корреляции

Корреляционно-регрессионный анализ в MS EXCEL

КОРРЕЛЯЦИОННО-РЕГРЕССИОННЫЙ АНАЛИЗ В MS EXCEL

1. Создайте файл исходных данных в MS Excel (например, таблица 2)

2. Построение корреляционного поля

Для построения корреляционного поля в командной строке выбираем меню Вставка/ Диаграмма. В появившемся диалоговом окне выберите тип диаграммы: Точечная; вид: Точечная диаграмма, позволяющая сравнить пары значений (Рис. 22).

Рисунок 22 – Выбор типа диаграммы

Нажимаем кнопку Далее>. В появившемся диалоговом окне (Рис. 23) указываем диапазон значений, в нашем примере = Лист1!A2:B26 и указываем расположение данных: в столбцах.

Рисунок 23– Вид окна при выборе диапазона и рядов

Нажимаем кнопку Далее>. В следующем диалоговом окне (рис. 24) указываем название диаграммы, наименование осей. Нажимаем кнопку Далее>, и Готово.

Рисунок 24 – Вид окна, шаг 3.

Таким образом, получаем корреляционное поле зависимости y от x. Далее добавим на графике линию тренда, для чего выполним следующие действия:

1. В области диаграммы щелкнуть левой кнопкой мыши по любой точке графика, затем щелкнуть правой кнопкой мыши по этой же точке. Появляется контекстное меню (рис. 25).

Рисунок 25 – Вид окна, шаг 4

2. В контекстном меню выбираем команду Добавить линию тренда.

3. В появившемся диалоговом окне выбираем тип графика (в нашем примере линейная) и параметры уравнения, как показано на рисунке 26.

Рисунок 26 – Установка параметров линии тренда

Нажимаем ОК. Результат представлен на рисунке 27.

Рисунок 27 – Корреляционное поле зависимости производительности труда от фондовооруженности

Аналогично строим корреляционное поле зависимости производительности труда от коэффициента сменности оборудования. (рисунок 28).

Рисунок 28 – Корреляционное поле зависимости производительности труда

3. Построение корреляционной матрицы.

Для построения корреляционной матрицы в меню Сервис выбираем Анализ данных.

С помощью инструмента анализа данных Регрессия, помимо результатов регрессионной статистики, дисперсионного анализа и доверительных интервалов, можно получить остатки и графики подбора линии регрессии, остатков и нормальной вероятности. Для этого необходимо проверить доступ к пакету анализа. В главном меню последовательно выберите Сервис/ Надстройки. Установите флажок Пакет анализа (Рисунок 29)

Рисунок 29 – Подключение надстройки Пакет анализа

В диалоговом окне Анализ данных выбираем Корреляция (Рисунок 30).

Рисунок 30 – Диалоговое окно Анализ данных

После нажатия ОК в появившемся диалоговом окне указываем входной интервал (в нашем примере А2:D26), группирование (в нашем случае по столбцам) и параметры вывода, как показано на рисунке 31.

Рисунок 31 – Диалоговое окно Корреляция

Результат расчетов представлен в таблице 4.

Источник

Корреляционно-регрессионный анализ в Excel: инструкция выполнения

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2 );
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  3. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  3. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.

Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

  1. Строим корреляционное поле: «Вставка» — «Диаграмма» — «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
  2. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
  3. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
  4. Жмем «Закрыть».

Теперь стали видны и данные регрессионного анализа.

Источник

Как построить график корреляции в excel

2 способа корреляционного анализа в Microsoft Excel

​Смотрите также​ корреляции, имея таблицу​ ее строить для​ что ее нет.​ установим минимальное значение​ контроля, анализа. С​ нужно посмотреть абсолютное​ есть на значение​ Влияющий фактор –​Ниже на конкретных практических​КОРРЕЛ(массив1;массив2)​ в новом файле.​

​.​Открывается окно доступных надстроек​

Суть корреляционного анализа

​ результатов анализа было​В окне надстроек устанавливаем​В списке, который представлен​Корреляционный анализ – популярный​ из столбцов Y​ нескольких переменных.​Рассмотрим на примере способы​ 100 000, а​

​ ее помощью выявляется​ число коэффициента (для​ анализируемого параметра влияют​ заработная плата (х).​ примерах рассмотрим эти​Аргументы функции КОРРЕЛ описаны​После того, как все​Открывается небольшое окошко. В​ Эксель. Ставим галочку​ оставлено по умолчанию,​ галочку около пункта​ в окне Мастера​ метод статистического исследования,​ и X. Пробовал​Матрица коэффициентов корреляции в​ расчета коэффициента корреляции,​ максимальное – 200​ зависимость и характер​ каждой сферы деятельности​ и другие факторы,​В Excel существуют встроенные​ два очень популярные​ ниже.​ настройки установлены, жмем​ нём выбираем пункт​

Расчет коэффициента корреляции

​ около пункта​ мы перемещаемся на​«Пакет анализа»​ функций, ищем и​ который используется для​ строить точечную диаграмму,​ Excel строится с​ особенности прямой и​ 000. Показатели объема​ связи между двумя​ есть своя шкала).​ не описанные в​ функции, с помощью​

Способ 1: определение корреляции через Мастер функций

​ в среде экономистов​Массив1​ на кнопку​«Регрессия»​«Пакет анализа»​ новый лист. Как​​. Жмем на кнопку​​ выделяем функцию​

    ​ выявления степени зависимости​ не получается сделать​ помощью инструмента «Корреляция»​ обратной взаимосвязи между​​ продаж находятся в​​ разными параметрами экономического​Для корреляционного анализа нескольких​

​ модели.​ которых можно рассчитать​ анализа. А также​ — обязательный аргумент. Диапазон​​«OK»​​. Жмем на кнопку​​. Жмем на кнопку​​ видим, тут указан​

​«OK»​КОРРЕЛ​​ одного показателя от​​ так, что бы​ из пакета «Анализ​ переменными.​ этих пределах:​ явления, производственного процесса.​ параметров (более 2)​Коэффициент -0,16285 показывает весомость​ параметры модели линейной​ приведем пример получения​ ячеек со значениями.​.​«OK»​ «OK».​

​ коэффициент корреляции. Естественно,​​.​​. Жмем на кнопку​ другого. В Microsoft​ в нижней(горизонтальной) оси​ данных».​Значения показателей x и​Минимальное значение для горизонтальной​ Диаграмма разброса показывает​ удобнее применять «Анализ​

​ переменной Х на​​ регрессии. Но быстрее​​ результатов при их​

​Массив2​Результаты регрессионного анализа выводятся​.​Теперь, когда мы перейдем​ он тот же,​После этого пакет анализа​«OK»​ Excel имеется специальный​ отображались параметры X,​На вкладке «Данные» в​

Способ 2: вычисление корреляции с помощью пакета анализа

​ y:​ оси Х –​ вид и тесноту​ данных» (надстройка «Пакет​ Y. То есть​ это сделает надстройка​ объединении.​

    ​ — обязательный аргумент. Второй​​ в виде таблицы​​Открывается окно настроек регрессии.​

​ во вкладку​ что и при​​ активирован. Переходим во​​.​

​ инструмент, предназначенный для​​ в той последовательности,​​ группе «Анализ» открываем​

​Y – независимая переменная,​ 100, т.к. ниже​​ взаимосвязи между парами​​ анализа»). В списке​ среднемесячная заработная плата​​ «Пакет анализа».​​Показывает влияние одних значений​ диапазон ячеек со​ в том месте,​​ В нём обязательными​​«Данные»​

​ использовании первого способа​ вкладку​​Открывается окно аргументов функции.​​ выполнения этого типа​​ как они стоят​​ пакет «Анализ данных»​

​ x – зависимая.​ этого показателя данных​ данных. К примеру,​​ нужно выбрать корреляцию​​ в пределах данной​Активируем мощный аналитический инструмент:​ (самостоятельных, независимых) на​ значениями.​​ которое указано в​​ для заполнения полями​​, на ленте в​​ – 0,97. Это​«Данные»​

​ В поле​ анализа. Давайте выясним,​ в таблице.​​ (для версии 2007).​​ Необходимо найти силу​​ в таблице нет.​​ между:​

​ и обозначить массив.​ модели влияет на​Нажимаем кнопку «Офис» и​ зависимую переменную. К​​Если аргумент, который является​​ настройках.​ являются​ блоке инструментов​ объясняется тем, что​. Как видим, тут​«Массив1»​ как пользоваться данной​ber$erk​ Если кнопка недоступна,​

​ (сильная / слабая)​​Диаграмма разброса приобрела следующий​​качеством продукта и влияющим​ Все.​​ количество уволившихся с​​ переходим на вкладку​ примеру, как зависит​ массивом или ссылкой,​Одним из основных показателей​«Входной интервал Y»​«Анализ»​ оба варианта выполняют​ на ленте появляется​вводим координаты диапазона​​ функцией.​​: >>> отображались параметры​

​ нужно ее добавить​ и направление (прямая​​ вид:​​ фактором;​Полученные коэффициенты отобразятся в​ весом -0,16285 (это​ «Параметры Excel». «Надстройки».​ количество экономически активного​ содержит текст, логические​ является​и​мы увидим новую​ одни и те​ новый блок инструментов​

​ ячеек одного из​Скачать последнюю версию​​ X, в той​​ («Параметры Excel» -​

​ / обратная) связи​Какие можно сделать выводы​двумя разными характеристиками качества;​ корреляционной матрице. Наподобие​ небольшая степень влияния).​Внизу, под выпадающим списком,​ населения от числа​ значения или пустые​R-квадрат​«Входной интервал X»​ кнопку –​ же вычисления, просто​ –​ значений, зависимость которого​ Excel​ последовательности, как они​ «Надстройки»). В списке​

​ между ними. Формула​ по данной диаграмме​двумя обстоятельствами, влияющими на​ такой:​ Знак «-» указывает​ в поле «Управление»​ предприятий, величины заработной​ ячейки, то такие​. В нем указывается​. Все остальные настройки​«Анализ данных»​

​ произвести их можно​

Регрессионный анализ в Microsoft Excel

​«Анализ»​ следует определить. В​Предназначение корреляционного анализа сводится​ стоят в таблице.​ инструментов анализа выбираем​ коэффициента корреляции выглядит​ рассеяния:​ качество, и т.п.​На практике эти две​ на отрицательное влияние:​ будет надпись «Надстройки​ платы и др.​ значения пропускаются; однако​ качество модели. В​ можно оставить по​

Подключение пакета анализа

​. Жмем на кнопку​ нашем случае это​ к выявлению наличия​А как вы​ «Корреляция».​ так:​Каждая точка дает представление​Диаграммы рассеяния применяются для​ методики часто применяются​

    ​ чем больше зарплата,​​ Excel» (если ее​​ параметров. Или: как​

​ ячейки, которые содержат​​ нашем случае данный​​ умолчанию.​

​Существует несколько видов регрессий:​Как видим, приложение Эксель​​«Анализ данных»​​ будут значения в​

​ зависимости между различными​ себе это представляеете?​Нажимаем ОК. Задаем параметры​​Чтобы упростить ее понимание,​​ об объеме продаж​​ обнаружения корреляции между​​ вместе.​ тем меньше уволившихся.​ нет, нажмите на​​ влияют иностранные инвестиции,​​ нулевые значения, учитываются.​

  • ​ коэффициент равен 0,705​В поле​параболическая;​​ предлагает сразу два​​, которая расположена в​ колонке «Величина продаж».​
  • ​ факторами. То есть,​ Ось на то​​ для анализа данных.​​ разобьем на несколько​ и контактах (как​​ данными. Если корреляционная​​Пример:​ Что справедливо.​​ флажок справа и​​ цены на энергоресурсы​

    Виды регрессионного анализа

    ​Если «массив1» и «массив2″​

    • ​ или около 70,5%.​
    • ​«Входной интервал Y»​
    • ​степенная;​
    • ​ способа корреляционного анализа.​
    • ​ нем.​
    • ​ Для того, чтобы​
    • ​ определяется, влияет ли​

    ​ она и ось,​ Входной интервал –​ несложных элементов.​ об одномерных совокупностях)​

    Линейная регрессия в программе Excel

    ​ зависимость присутствует, то​Строим корреляционное поле: «Вставка»​​ выберите). И кнопка​ и др. на​ имеют различное количество​ Это приемлемый уровень​указываем адрес диапазона​логарифмическая;​ Результат вычислений, если​Открывается список с различными​ внести адрес массива​ уменьшение или увеличение​ что на ней​

    ​ диапазон ячеек со​Найдем средние значения переменных,​ и о взаимосвязи​ ​ установить контроль над​ — «Диаграмма» -​ ​Корреляционный анализ помогает установить,​​ «Перейти». Жмем.​​ уровень ВВП.​ точек данных, функция​ качества. Зависимость менее​ ячеек, где расположены​экспоненциальная;​ вы все сделаете​​ вариантами анализа данных.​​ в поле, просто​ одного показателя на​ все по возрастанию​​ значениями. Группирование –​​ используя функцию СРЗНАЧ:​ между этими параметрами.​ наблюдаемым явлением значительно​ «Точечная диаграмма» (дает​ есть ли между​​Открывается список доступных надстроек.​​Результат анализа позволяет выделять​ КОРРЕЛ возвращает значение​

      ​ 0,5 является плохой.​​ переменные данные, влияние​​показательная;​ правильно, будет полностью​​ Выбираем пункт​​ выделяем все ячейки​​ изменение другого.​​ идет.​

    ​ по столбцам (анализируемые​Посчитаем разницу каждого y​​Количество контактов (горизонтальная ось)​​ проще.​​ сравнивать пары). Диапазон​​ показателями в одной​

    ​ Выбираем «Пакет анализа»​ приоритеты. И основываясь​ ошибки #Н/Д.​Ещё один важный показатель​​ факторов на которые​​гиперболическая;​​ идентичным. Но, каждый​​«Корреляция»​ с данными в​Если зависимость установлена, то​

    ​Приложите хотябы картинку​​ данные сгруппированы в​​ и yсредн., каждого​ распределилось в диапазоне​​ значений – все​ или двух выборках​ и нажимаем ОК.​ на главных факторах,​Если какой-либо из массивов​ расположен в ячейке​ мы пытаемся установить.​линейная регрессия.​ пользователь может выбрать​. Кликаем по кнопке​ вышеуказанном столбце.​

    ​ определяется коэффициент корреляции.​​ — как должно​​ столбцы). Выходной интервал​ х и хсредн.​ 140-220. Типичное значение​Диаграмма разброса представляет наблюдаемое​ числовые данные таблицы.​ связь. Например, между​После активации надстройка будет​ прогнозировать, планировать развитие​ пуст или если​ на пересечении строки​ В нашем случае​О выполнении последнего вида​ более удобный для​«OK»​В поле​ В отличие от​

    ​ все выглядеть в​ – ссылка на​ Используем математический оператор​ равно примерно 170.​ явление в пространстве​Щелкаем левой кнопкой мыши​ временем работы станка​ доступна на вкладке​ приоритетных направлений, принимать​ «s» (стандартное отклонение)​«Y-пересечение»​ это будут ячейки​ регрессионного анализа в​ него вариант осуществления​.​«Массив2»​ регрессионного анализа, это​ итоге.​ ячейку, с которой​ «-».​Объемы продаж за анализируемый​ двух измерений. Если​ по любой точке​ и стоимостью ремонта,​ «Данные».​

    ​ управленческие решения.​ их значений равно​и столбца​​ столбца «Количество покупателей».​​ Экселе мы подробнее​

    Разбор результатов анализа

    ​ расчета.​Открывается окно с параметрами​нужно внести координаты​ единственный показатель, который​________________________​

    ​ начнется построение матрицы.​Теперь перемножим найденные разности:​​ период (вертикальная ось)​​ одну величину рассматривать​ на диаграмме. Потом​ ценой техники и​Теперь займемся непосредственно регрессионным​Регрессия бывает:​ нулю, функция КОРРЕЛ​«Коэффициенты»​ Адрес можно вписать​

    ​ поговорим далее.​Автор: Максим Тютюшев​ корреляционного анализа. В​​ второго столбца. У​​ рассчитывает данный метод​​[email protected]​​ Размер диапазона определится​Найдем сумму значений в​ находятся в диапазоне​ как «причину», влияющую​ правой. В открывшемся​ продолжительностью эксплуатации, ростом​ анализом.​линейной (у = а​ возвращает значение ошибки​

    ​. Тут указывается какое​​ вручную с клавиатуры,​​Внизу, в качестве примера,​​Регрессионный анализ является одним​​ отличие от предыдущего​ нас это затраты​ статистического исследования. Коэффициент​anvg​ автоматически.​ данной колонке. Это​ примерно от 130​ на другую величину,​ меню выбираем «Добавить​

    ​ и весом детей​Открываем меню инструмента «Анализ​ + bx);​ #ДЕЛ/0!.​ значение будет у​ а можно, просто​ представлена таблица, в​ из самых востребованных​ способа, в поле​

    ​ на рекламу. Точно​

    КОРРЕЛ (функция КОРРЕЛ)

    ​ корреляции варьируется в​: gooou​После нажатия ОК в​​ и будет числитель.​​ 000 до 190​

    Описание

    ​ то ей будет​ линию тренда».​ и т.д.​ данных». Выбираем «Регрессия».​параболической (y = a​Уравнение для коэффициента корреляции​ Y, а в​ выделить требуемый столбец.​ которой указана среднесуточная​ методов статистического исследования.​

    Синтаксис

    ​ так же, как​ диапазоне от +1​

    ​А что за​​ выходном диапазоне появляется​Для расчета знаменателя разницы​

    ​ 000. Типичное значение​​ соответствовать ось Х​Назначаем параметры для линии.​Если связь имеется, то​

    Замечания

    ​Откроется меню для выбора​ + bx +​ имеет следующий вид:​ нашем случае, это​ Последний вариант намного​ температура воздуха на​ С его помощью​мы вводим интервал​

    ​ и в предыдущем​ до -1. При​ термин такой: Поле​ корреляционная матрица. На​ y и y-средн.,​

    ​ равняется приблизительно 150​ (горизонтальная ось). Реагирующей​ Тип – «Линейная».​ влечет ли увеличение​ входных значений и​ cx2);​где​

    ​ количество покупателей, при​ проще и удобнее.​

    ​ улице, и количество​

    ​ можно установить степень​ не каждого столбца​

    Пример

    ​ случае, заносим данные​ наличии положительной корреляции​ корреляции? Что то​ пересечении строк и​ х и х-средн.​ 000.​ на это влияние​ Внизу – «Показать​ одного параметра повышение​ параметров вывода (где​экспоненциальной (y = a​являются средними значениями выборок​ всех остальных факторах​

    ​ покупателей магазина за​

    ​ влияния независимых величин​

    ​ отдельно, а всех​

    ​ увеличение одного показателя​

    ​ даже в Википедии​

    ​ Нужно возвести в​

    ​Взаимосвязь между числом контактов​

    ​ величине соответствует ось​

    ​ уравнение на диаграмме».​

    ​ (положительная корреляция) либо​

    ​ отобразить результат). В​

    ​ СРЗНАЧ(массив1) и СРЗНАЧ(массив2).​

    ​ равных нулю. В​«Входной интервал X»​ соответствующий рабочий день.​

    ​ на зависимую переменную.​

    Корреляционно-регрессионный анализ в Excel: инструкция выполнения

    ​ столбцов, которые участвуют​Жмем на кнопку​ способствует увеличению второго.​ такого нет :-(​ корреляции. Если координаты​ квадрат.​ и объемом сбыта​

    ​ Y (вертикальная ось).​Жмем «Закрыть».​ уменьшение (отрицательная) другого.​ полях для исходных​степенной (y = a*x^b);​Скопируйте образец данных из​ этой таблице данное​вводим адрес диапазона​

    Регрессионный анализ в Excel

    ​ Давайте выясним при​ В функционале Microsoft​ в анализе. В​«OK»​ При отрицательной корреляции​По графику -​ совпадают, то выводится​Находим суммы значений в​ является положительной, т.к.​ Когда четко классифицировать​Теперь стали видны и​ Корреляционный анализ помогает​ данных указываем диапазон​

    ​гиперболической (y = b/x​ следующей таблицы и​ значение равно 58,04.​ ячеек, где находятся​ помощи регрессионного анализа,​ Excel имеются инструменты,​

    ​ нашем случае это​

    • ​.​ увеличение одного показателя​
    • ​ так?​ значение 1.​ полученных колонках (с​
    • ​ точки выстроились слева​ переменные невозможно, распределение​
    • ​ данные регрессионного анализа.​
    • ​ аналитику определиться, можно​ описываемого параметра (У)​
    • ​ + a);​ вставьте их в​Значение на пересечении граф​
    • ​ данные того фактора,​ как именно погодные​

    ​ предназначенные для проведения​ данные в столбцах​Как видим, коэффициент корреляции​ влечет за собой​Guest​

    ​Между значениями y и​ помощью функции АВТОСУММА).​ направо снизу вверх.​ производится пользователем.​В окружающем мире очень​ ли по величине​ и влияющего на​

    ​логарифмической (y = b​ ячейку A1 нового​

    ​«Переменная X1»​​ влияние которого на​​ условия в виде​​ подобного вида анализа.​​ «Затраты на рекламу»​​ в виде числа​​ уменьшение другого. Чем​​: Вот аналогичный пример.​​ х1 обнаружена сильная​​ Перемножаем их. Результат​​ Следовательно, чем больше​

    ​Построим диаграмму рассеяния для​ много взаимосвязей между​ одного показателя предсказать​ него фактора (Х).​

    ​ * 1n(x) +​ листа Excel. Чтобы​и​ переменную мы хотим​ температуры воздуха могут​

    ​ Давайте разберем, что​ и «Величина продаж».​ появляется в заранее​ больше модуль коэффициента​anvg​ прямая взаимосвязь. Между​ возводим в квадрат​

    ​ у менеджера было​

    1. ​ небольшой двумерной совокупности​ объектами, предметами, событиями,​ возможное значение другого.​
    2. ​ Остальное можно и​ a);​ отобразить результаты формул,​«Коэффициенты»​ установить. Как говорилось​ повлиять на посещаемость​ они собой представляют​Параметр​
    3. ​ выбранной нами ячейке.​ корреляции, тем заметнее​: График то вот​

    ​ х1 и х2​ (функция КОРЕНЬ).​ контактов с клиентами​

    ​ данных:​ отношениями и т.д.​

    1. ​Коэффициент корреляции обозначается r.​ не заполнять.​
    2. ​показательной (y = a​ выделите их и​показывает уровень зависимости​ выше, нам нужно​ торгового заведения.​ и как ими​«Группирование»​ В данном случае​ изменение одного показателя​ такой.​ имеется сильная обратная​
    3. ​Осталось посчитать частное (числитель​ (точки правее), тем​Предположим, что затраченные усилия​ Например, между количеством​ Варьируется в пределах​После нажатия ОК, программа​ * b^x).​ нажмите клавишу F2,​

    ​ Y от X.​ установить влияние температуры​Общее уравнение регрессии линейного​

    ​ пользоваться.​оставляем без изменений​ он равен 0,97,​ отражается на изменении​Только кто вам​ связь. Связь со​ и знаменатель уже​ больше прибыли организации​ каждого менеджера повлияли​ заключенных контрактов и​ от +1 до​ отобразит расчеты на​Рассмотрим на примере построение​ а затем — клавишу​ В нашем случае​ на количество покупателей​ вида выглядит следующим​

    ​Скачать последнюю версию​ –​ что является очень​ второго. При коэффициенте​ сказал, что это​ значениями в столбце​ известны).​ он дал (точки​ на результат его​ трудовыми затратами, между​

    ​ -1. Классификация корреляционных​ новом листе (можно​ регрессионной модели в​ ВВОД. При необходимости​ — это уровень​ магазина, а поэтому​ образом:​ Excel​«По столбцам»​ высоким признаком зависимости​ равном 0 зависимость​ имеет какое-то отношение​ х3 практически отсутствует.​Между переменными определяется сильная​

    Корреляционный анализ в Excel

    ​ работы (так принято​ сбытом и доходами​ связей для разных​ выбрать интервал для​ Excel и интерпретацию​ измените ширину столбцов,​ зависимости количества клиентов​ вводим адрес ячеек​У = а0 +​Но, для того, чтобы​, так как у​

    ​ одной величины от​ между ними отсутствует​ к корреляционному анализу?​Изобразим наглядно корреляционные отношения​ прямая связь.​Коэффициент корреляции отражает степень​ считать). Следовательно, число​ населения, между образованием​ сфер будет отличаться.​ отображения на текущем​

    ​ результатов. Возьмем линейный​ чтобы видеть все​ магазина от температуры.​ в столбце «Температура».​ а1х1 +…+акхк​ использовать функцию, позволяющую​ нас группы данных​ другой.​ полностью.​ Как минимум подразумевается​

    ​ с помощью графиков.​Встроенная функция КОРРЕЛ позволяет​ взаимосвязи между двумя​

    ​ контактов необходимо показать​ и уровнем заработной​

    ​ При значении коэффициента​ листе или назначить​ тип регрессии.​ данные.​ Коэффициент 1,31 считается​

    ​ Это можно сделать​. В этой формуле​ провести регрессионный анализ,​

    1. ​ разбиты именно на​Кроме того, корреляцию можно​
    2. ​Теперь давайте попробуем посчитать​ зависимость одной величины​Сильная прямая связь между​ избежать сложных расчетов.​
    3. ​ показателями. Всегда принимает​ на горизонтальной оси,​ платы, вмешательством государства​ 0 линейной зависимости​

    ​ вывод в новую​Задача. На 6 предприятиях​Данные1​ довольно высоким показателем​ теми же способами,​

    ​Y​ прежде всего, нужно​ два столбца. Если​ вычислить с помощью​ коэффициент корреляции на​ от другой. Такой​ y и х1.​ Рассчитаем коэффициент парной​

    ​ значение от -1​ а продажи (результат​ и состоянием экономики.​

    Корреляционно-регрессионный анализ

    ​ между выборками не​ книгу).​ была проанализирована среднемесячная​

    1. ​ влияния.​ что и в​означает переменную, влияние​ активировать Пакет анализа.​ бы они были​ одного из инструментов,​
    2. ​ конкретном примере. Имеем​ же тип построения​Сильная обратная связь между​ корреляции в Excel​ до 1. Если​ затраченных усилий) –​
    3. ​ Каждое из измерений​ существует.​В первую очередь обращаем​ заработная плата и​
    4. ​3​

    ​Как видим, с помощью​ поле «Количество покупателей».​

    Диаграмма рассеяния в Excel и сферы ее применения

    ​ факторов на которую​ Только тогда необходимые​ разбиты построчно, то​ который представлен в​ таблицу, в которой​ её исключает, поскольку​ y и х2.​ с ее помощью.​ коэффициент расположился около​ на вертикальной.​ в этих парах​Рассмотрим, как с помощью​ внимание на R-квадрат​ количество уволившихся сотрудников.​9​ программы Microsoft Excel​С помощью других настроек​ мы пытаемся изучить.​ для этой процедуры​ тогда следовало бы​ пакете анализа. Но​

    ​ помесячно расписана в​ построена диаграмма зависимости​ Изменения значений происходят​ Вызываем мастер функций.​ 0, то говорят​Для построения диаграммы рассеяния​ можно изучать по​ средств Excel найти​ и коэффициенты.​ Необходимо определить зависимость​2​ довольно просто составить​ можно установить метки,​ В нашем случае,​

    Что показывает диаграмма рассеяния

    ​ инструменты появятся на​ переставить переключатель в​ прежде нам нужно​ отдельных колонках затрата​ Y от её​ параллельно друг другу.​ Находим нужную. Аргументы​ об отсутствии связи​ в Excel выделим​ отдельности. Как одномерную​ коэффициент корреляции.​R-квадрат – коэффициент детерминации.​ числа уволившихся сотрудников​

    1. ​7​ таблицу регрессионного анализа.​
    2. ​ уровень надёжности, константу-ноль,​
    3. ​ это количество покупателей.​ ленте Эксель.​

    ​ позицию​ этот инструмент активировать.​ на рекламу и​ порядкового номера -​ Но если y​ функции – массив​ между переменными.​

    ​ столбцы «Контакты», «Объем​

    Построение диаграммы рассеяния в Excel

    ​ совокупность. Но реальный​Для нахождения парных коэффициентов​ В нашем примере​ от средней зарплаты.​4​ Но, работать с​ отобразить график нормальной​ Значение​Перемещаемся во вкладку​«По строкам»​Переходим во вкладку​ величина продаж. Нам​ не более.​ растет, х падает.​ значений y и​

    ​Если значение близко к​ продаж» (включая заголовки).​ результат получается лишь​

    ​ применяется функция КОРРЕЛ.​ – 0,755, или​Модель линейной регрессии имеет​12​ полученными на выходе​ вероятности, и выполнить​x​«Файл»​.​«Файл»​

    ​ предстоит выяснить степень​Guest​ Значения y увеличиваются​ массив значений х:​ единице (от 0,9,​ Перейдем на вкладку​ при изучении обоих​Задача: Определить, есть ли​ 75,5%. Это означает,​ следующий вид:​

    ​5​ данными, и понимать​ другие действия. Но,​

    ​– это различные​.​В параметрах вывода по​.​ зависимости количества продаж​: Как вы изменили​ – значения х​Покажем значения переменных на​ например), то между​

    ​ «Вставка» в группу​ измерений, взаимосвязи между​ взаимосвязь между временем​ что расчетные параметры​У = а​15​ их суть, сможет​

    ​ в большинстве случаев,​ факторы, влияющие на​Переходим в раздел​ умолчанию установлен пункт​В открывшемся окне перемещаемся​

    ​ от суммы денежных​ горизонтальную ось? Почему​

    ​ уменьшаются.​ графике:​ наблюдаемыми объектами существует​

    1. ​ «Диаграммы». Использование данного​ ними.​ работы токарного станка​ модели на 75,5%​0​6​
    2. ​ только подготовленный человек.​ эти настройки изменять​ переменную. Параметры​«Параметры»​
    3. ​«Новый рабочий лист»​ в раздел​ средств, которая была​ мне не даёт​Отсутствие взаимосвязи между значениями​Видна сильная связь между​ сильная прямая взаимосвязь.​ инструмента анализа возможно​
    4. ​При работе с двумерными​ и стоимостью его​ объясняют зависимость между​+ а​17​Автор: Максим Тютюшев​ не нужно. Единственное​a​.​, то есть, данные​«Параметры»​ потрачена на рекламу.​

    Коэффициент парной корреляции в Excel

    ​ её менять и​ y и х3.​ y и х,​ Если коэффициент близок​ с помощью точечных​ данными обычно рисуют​ обслуживания.​ изучаемыми параметрами. Чем​1​

    ​Формула​В этой статье описаны​ на что следует​являются коэффициентами регрессии.​Открывается окно параметров Excel.​ будут выводиться на​.​Одним из способов, с​ она не активна?​ Изменения х3 происходят​ т.к. линии идут​ к другой крайней​ диаграмм:​ диаграммы рассеяния. Другие​Ставим курсор в любую​ выше коэффициент детерминации,​х​Описание​ синтаксис формулы и​ обратить внимание, так​ То есть, именно​

    Расчет коэффициента корреляции в Excel

    ​ Переходим в подраздел​ другом листе. Можно​Далее переходим в пункт​ помощью которого можно​Файл удален​

    ​ хаотично и никак​ практически параллельно друг​

    ​ точке диапазона (-1),​По умолчанию программа построила​ названия – «диаграммы​ ячейку и нажимаем​ тем качественнее модель.​1​Результат​ использование функции​ это на параметры​

    ​ они определяют значимость​«Надстройки»​ изменить место, переставив​

    1. ​«Надстройки»​ провести корреляционный анализ,​
    2. ​- велик размер​ не соотносятся с​ другу. Взаимосвязь прямая:​ то между переменными​ диаграмму разброса такого​
    3. ​ разброса», «точечные диаграммы».​
    4. ​ кнопку fx.​ Хорошо – выше​+…+а​
    5. ​=КОРРЕЛ(A2:A6;B2:B6)​КОРРЕЛ​ вывода. По умолчанию​ того или иного​.​
    6. ​ переключатель. Это может​.​ является использование функции​ — [​ изменениями y.​ растет y –​
    7. ​ имеется сильная обратная​ вида:​ Подобные графики показывают​

    ​В категории «Статистические» выбираем​ 0,8. Плохо –​

    ​к​Коэффициент корреляции двух наборов​в Microsoft Excel.​ вывод результатов анализа​ фактора. Индекс​В самой нижней части​ быть текущий лист​В нижней части следующего​ КОРРЕЛ. Сама функция​МОДЕРАТОРЫ​

    ​Скачать вычисление коэффициента парной​ растет х, уменьшается​

    ​ взаимосвязь. Когда значение​Изменим параметры горизонтальной и​ значения двух переменных​ функцию КОРРЕЛ.​ меньше 0,5 (такой​х​ данных в столбцах​Возвращает коэффициент корреляции между​ осуществляется на другом​

    Матрица парных коэффициентов корреляции в Excel

    ​ открывшегося окна переставляем​ (тогда вы должны​ окна в разделе​ имеет общий вид​]​ корреляции в Excel​ y – уменьшается​ находится где-то посередине​

    ​ вертикальной оси, чтобы​ в виде точек.​Аргумент «Массив 1» -​ анализ вряд ли​к​

    1. ​ A и B.​ диапазонами ячеек «массив1″​ листе, но переставив​обозначает общее количество​ переключатель в блоке​ будете указать координаты​«Управление»​КОРРЕЛ(массив1;массив2)​ber$erk​Для чего нужен такой​
    2. ​ х.​ от 0 до​ четыре пары показателей​ Если в двумерных​ первый диапазон значений​ можно считать резонным).​.​0,997054486​ и «массив2». Коэффициент​ переключатель, вы можете​ этих самых факторов.​«Управление»​ ячеек вывода информации)​
    3. ​переставляем переключатель в​.​: Тип диаграммы не​ коэффициент? Для определения​​ 1 или от​ расположились более равномерно​ данных содержатся какие-либо​

    ​ – время работы​ В нашем примере​Где а – коэффициенты​Регрессионный и корреляционный анализ​ корреляции используется для​ установить вывод в​Кликаем по кнопке​в позицию​

    ​ или новая рабочая​ позицию​

    1. ​Выделяем ячейку, в которой​ точечная, а график​
    2. ​ взаимосвязи между наблюдаемыми​Корреляционная матрица представляет собой​ 0 до -1,​ в области построения.​ проблемы (выбросы), то​ станка: А2:А14.​ – «неплохо».​ регрессии, х –​ – статистические методы​
    3. ​ определения взаимосвязи между​ указанном диапазоне на​«Анализ данных»​«Надстройки Excel»​ книга (файл).​«Надстройки Excel»​

    ​ должен выводиться результат​ с маркерами.​

    ​ явлениями и составления​ таблицу, на пересечении​ то речь идет​ Щелкнем сначала правой​ их легко будет​

    Поле корреляции

    ​Аргумент «Массив 2» -​​Коэффициент 64,1428 показывает, каким​

    ​ влияющие переменные, к​ исследования. Это наиболее​ двумя свойствами. Например,​ том же листе,​. Она размещена во​, если он находится​Когда все настройки установлены,​, если он находится​ расчета. Кликаем по​________________________​ прогнозов.​ строк и столбцов​

    ​ о слабой связи​​ кнопкой мыши по​ обнаружить с помощью​ второй диапазон значений​ будет Y, если​
    ​ – число факторов.​ распространенные способы показать​ можно установить зависимость​ где расположена таблица​ вкладке​ в другом положении.​ жмем на кнопку​
    ​ в другом положении.​ кнопке​[email protected]​Gooou​
    ​ которой находятся коэффициенты​
    ​ (прямой или обратной).​

    ​ вертикальной оси. Выберем​​ соответствующей диаграммы разброса.​
    ​ – стоимость ремонта:​ все переменные в​В нашем примере в​ зависимость какого-либо параметра​ между средней температурой​
    ​ с исходными данными,​«Главная»​

    ​ Жмем на кнопку​​«Вставить функцию»​Guest​
    ​: Добрый день.​ корреляции между соответствующими​ Такую взаимосвязь обычно​ «Формат оси»:​Диаграмма рассеяния – один​ В2:В14. Жмем ОК.​ рассматриваемой модели будут​ качестве У выступает​ от одной или​ в помещении и​ или в отдельной​в блоке инструментов​«Перейти»​

    ​.​​«OK»​, которая размещается слева​: Спасибо, разобрался.​Необходимо постройте поле​ значениями. Имеет смысл​

    ​ не учитывают: считается,​​На вкладке «Параметры оси»​ из инструментов статистического​​Чтобы определить тип связи,​​ равны 0. То​

    ​ показатель уволившихся работников.​​ нескольких независимых переменных.​ использованием кондиционера.​ книге, то есть​
    ​«Анализ»​
    ​.​

    Источник

    Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

    Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

    Регрессионный анализ в Excel

    Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

    Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

    Регрессия бывает:

    • линейной (у = а + bx);
    • параболической (y = a + bx + cx2);
    • экспоненциальной (y = a * exp(bx));
    • степенной (y = a*x^b);
    • гиперболической (y = b/x + a);
    • логарифмической (y = b * 1n(x) + a);
    • показательной (y = a * b^x).

    Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

    Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

    Зарплата сотрудников.

    Модель линейной регрессии имеет следующий вид:

    У = а0 + а1х1 +…+акхк.

    Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

    В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

    В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

    Активируем мощный аналитический инструмент:

    1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
    2. Надстройки.

    3. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
    4. Управление.

    5. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

    Пакет анализа.

    После активации надстройка будет доступна на вкладке «Данные».

    Анализ данных.

    Теперь займемся непосредственно регрессионным анализом.

    1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
    2. Регрессия.

    3. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
    4. Параметры регрессии.

    5. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

    Результат анализа регрессии.

    В первую очередь обращаем внимание на R-квадрат и коэффициенты.

    R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

    Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

    Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.

    

    Корреляционный анализ в Excel

    Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

    Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

    Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

    Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

    Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

    Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

    Время и стоимость.

    Ставим курсор в любую ячейку и нажимаем кнопку fx.

    1. В категории «Статистические» выбираем функцию КОРРЕЛ.
    2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
    3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

    Функция КОРРЕЛ.

    Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

    Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

    Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

    Корреляционная матрица.

    Корреляционно-регрессионный анализ

    На практике эти две методики часто применяются вместе.

    Пример:

    Объем продаж и цена.

    1. Строим корреляционное поле: «Вставка» — «Диаграмма» — «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
    2. Поле корреляции.

    3. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
    4. Добавить линию тренда.

    5. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
    6. Линейная линия тренда.

    7. Жмем «Закрыть».

    Линейная корреляция.

    Теперь стали видны и данные регрессионного анализа.

    Correlation basically means a mutual connection between two or more sets of data. In statistics bivariate data or two random variables are used to find the correlation between them. Correlation coefficient is generally the measurement of correlation between the bivariate data which basically denotes how much two random variables are correlated with each other.

    If the correlation coefficient is 0, the bivariate data are not correlated with each other.

    If the correlation coefficient is -1 or +1, the bivariate data are strongly correlated with each other.

    r=-1 denotes strong negative relationship and r=1 denotes strong positive relationship.

    In general, if the correlation coefficient is close to -1 or +1 then we can say that the bivariate data are strongly correlated to each other.

    The correlation coefficient is calculated using Pearson’s Correlation Coefficient which is given by :

    where,

    r : Correlation coefficient
    x_i : Values of the variable x.
    y_i : Values of the variable y.
    n : Number of samples taken in the data set.
    Numerator : Covariance of x and y.
    Denominator : Product of Standard Deviation of x and Standard Deviation of y.

    In this article we are going to discuss how to make correlation charts in Excel using suitable examples.

    Example 1 : Consider the following data set :

    FINDING CORRELATION COEFFICIENT IN EXCEL

    In Excel to find the correlation coefficient use the formula :

    =CORREL(array1,array2)
    array1 : array of variable x
    array2: array of variable y

    To insert array1 and array2 just select the cell range for both.

    1. Let’s find the correlation coefficient for the variables and X and Y1.

    array1 : Set of values of X. The cell range is from A2 to A6.

    array2 : Set of values of Y1. The cell range is from B2 to B6.

    Similarly, you can find the correlation coefficients for (X , Y2) and (X , Y3) using the Excel formula.

    Finally, the correlation coefficients are as follows :

    From the above table we can infer that :

    X and Y1 has negative correlation coefficient.

    X and Y2 has positive correlation coefficient.

    X and Y3 are not correlated as the correlation coefficient is almost zero.

    Correlation Chart in Excel:

     A scatter plot is mostly used for data analysis of bivariate data. The chart consists of two variables X and Y where one of them is independent and the second variable is dependent on the previous one. The chart is a pictorial representation of how these two data are correlated with each other. Three cases are possible on the basis of the value of the correlation coefficient, R as shown below :

    Types of Correlation Chart

    Example 2: Consider the following data set :

    The correlation coefficients for the above data set are :

    The steps to plot a correlation chart are :

    • Select the bivariate data X and Y in the Excel sheet.
    • Go to Insert tab on the top of the Excel window.
    • Select Insert Scatter or Bubble chart. A pop-down menu will appear.
    • Now select the Scatter chart.

    • Now, we need to add a linear trendline in the scatter plot to show the correlation between the bivariate data. In order to do so, select the chart and from the top right corner click on the “+” button and then check the box of Trendline.

    • The trendline is now added and our correlation chart is now ready.

    Negative relationship chart

    • Now you can format the Trendline by selecting and clicking on the “Format Trendline” option. A dialog box will open where you can change the type and color of the trendline and also show the R^2  value in the chart. 

    You can further format the above chart by making it more interactive by changing the “Chart Styles”, adding suitable “Axis Titles”, “Chart Title”, “Data Labels”, changing the “Chart Type” etc. It can be done using the “+” button in the top right corner of the Excel chart.

    Finally, after all the modification the charts look like :

    Correlation Chart 1

    Since the correlation coefficient is R=-0.79, we have obtained a negative correlated chart. The linear trendline will grow downwards.

    Correlation Chart 2

    Since the correlation coefficient is R=0.89, we have obtained a positive correlated chart. The linear trendline will grow upwards.

    Correlation Chart 3

    Since the correlation coefficient is R=0.01, which is approximately 0, so we have obtained a zero correlated chart. The linear trendline will be a straight line parallel to X-axis and it implies the bivariate data X and Y3 are not correlated to each other.

    Содержание

    1. Добавление трендовой линии на график
    2. Построение графика
    3. Создание линии
    4. Настройка линии
    5. Прогнозирование
    6. Базовые понятия
    7. Определение коэффициентов модели
    8. Способ расчета значений линейного тренда в Excel с помощью графика
    9. Способ расчета значений линейного тренда в Excel — функция ТЕНДЕНЦИЯ
    10. Уравнение линии тренда в Excel
    11. Линейная аппроксимация
    12. Экспоненциальная линия тренда
    13. Логарифмическая линия тренда в Excel
    14. Общая информация
    15. Возможности инструмента
    16. Разновидности
    17. Разбираемся с трендами в MS Excel
    18. Зачем нужна линия тренда
    19. Как построить линию тренда в MS Excel

    Добавление трендовой линии на график

    Данный элемент технического анализа позволяет визуально увидеть изменение цены за указанный период времени. Это может быть месяц, год или несколько лет. Информация будет отображать значение средних показателей в виде геометрических фигур. Добавить линию тренда в Excel 2010 можно с помощью встроенных стандартных инструментов.

    Построение графика

    Чтобы правильно строить трендовые линии, нужно соблюдать функциональную зависимость y=f(x). Для получения корректного прогноза в столбец А вносится информация о временном периоде, а в столбец В — цена в указанный промежуток.

    Построение графика выполняется по следующему алгоритму:

    1. Первым действием нужно выделить диапазон данных, например это А1:В9, затем активировать инструмент: «Вставка»-«Диаграммы»-«Точечная»-«Точечная с гладкими кривыми и маркерами».
    2. После открытия графика пользователю станет доступна еще одна панель управления данными, на которой нужно выбрать следующее: «Работа с диаграммами»-«Макет»-«Линия тренда»-«Линейное приближение».
    3. Следующим шагом требуется выполнить двойной клик по образовавшейся линии тенденции в Excel. Когда появиться вспомогательное окно, отметить птичкой опцию «показывать уравнение на диаграмме».

    Важно помнить, что если на графике имеется 2 или более линий, отображающих анализ данных, то перед выполнением 3 пункта нужно будет выбрать одну из них и включить в тенденцию. Эта короткая инструкция поможет начинающим специалистам разобраться, как строится линия тренда в Экселе.

    Создание линии

    Дальнейшая работа будет происходить непосредственно с трендовой линией.

    Добавление тренда на диаграмму происходит следующим образом:

    1. Перейти во вкладку «Работа с диаграммами», затем выбрать раздел «Макет»-«Анализ» и после подпункт «Линия тенденции». Появится выпадающий список, в котором необходимо активировать строку «Линейное приближение».
    2. Если все выполнено правильно, в области построения диаграмм появится кривая линия черного цвета. По желанию цветовую гамму можно будет изменить на любую другую.

    Этот способ поможет создать и построить тренд в Excel 2016 или более ранних версиях.

    Однако важно помнить, что вставить линию нельзя для диаграмм и графиков следующего типа:

    • лепесткового;
    • кругового;
    • поверхностного;
    • кольцевого;
    • объемного;
    • с накоплением.

    Настройка линии

    Построение линий тренда имеет ряд вспомогательных настроек, которые помогут придать графику законченный и презентабельный вид.

    Необходимо запомнить следующее:

    1. Чтобы добавить название диаграмме, нужно дважды кликнуть по ней и в появившемся окне ввести заголовок. Для выбора расположения имени графика необходимо перейти во вкладку «Работа с диаграммами», затем выбрать «Макет» и «Название диаграммы». После этого появится список с возможным расположением заглавия.
    2. Дополнительно в этом же разделе можно найти пункт, отвечающий за названия осей и их расположение относительно графика. Интересно, что для вертикальной оси разработчики программы продумали возможность повернутого расположения наименования, чтобы диаграмма читалась удобно и выглядела гармонично.
    3. Чтобы внести изменения непосредственно в построение линий, нужно в разделе «Макет» найти «Анализ», затем «Прямая тренда» и в самом низу списка нажать «Дополнительные параметры…». Здесь можно изменить цвет и формат линии, выбрать один из параметров сглаживания и аппроксимации (степенный, полиноминальный, логарифмический и т.д.).
    4. Еще есть функция определения достоверности построенной модели. Для этого в дополнительных настройках требуется активировать пункт «Разместить на график величину достоверности аппроксимации» и после этого закрыть окно. Наилучшим значением является 1. Чем сильнее полученный показатель отличается от нее, тем ниже достоверность модели.

    Прогнозирование

    Для получения наиболее точного прогноза необходимо сменить построенный график на гистограмму. Это поможет сравнить уравнения.

    Для этого выполняем последовательность действий:

    1. Вызвать для графика контекстное меню и выбрать «Изменить тип диаграммы».
    2. Появится новое окно с настройками, в котором требуется найти опцию «Гистограмма» и после выбрать подвид с группировкой.

    Теперь пользователю должны быть видны оба графика. Они визуализируют одни и те же данные, но имеют разные уравнения для образования тенденции.

    Общая тенденция движения параметра сохраняется на обеих диаграммах, что говорит об аппроксимации (приближении) трендовой прямой.

    Следующим шагом необходимо сравнить уравнения точки пересечения с осями на разных диаграммах.

    Для визуального отображения нужно сделать следующее:

    1. Перевести гистограмму в простой точечный график с гладкими кривыми и маркерами. Процесс выполняется через пункт контекстного меню «Изменить тип диаграммы…».
    2. Выполнить двойной клик по прямой образовавшейся тенденции, задать ей параметр прогноза назад на 12,0 и сохранить изменения.

    Такая настройка поможет увидеть, что угол наклона тенденции меняется в зависимости от вида графика, но общее направление движения остается неизменным. Это свидетельствует о том, что построить линию тренда в Эксель можно лишь в качестве дополнительного инструмента анализа и брать его в расчет следует только как приближающий параметр. Строить аналитические прогнозы, основываясь лишь на этой прямой, не рекомендуется.

    Базовые понятия

    Думаю, еще со школы все знакомы с линейной функцией, она как раз и лежит в основе тренда:

    Y(t) = a0 + a1*t + E

    Y — это объем продаж, та переменная, которую мы будем объяснять временем и от которого она зависит, то есть Y(t);

    t — номер периода (порядковый номер месяца), который объясняет план продаж Y;

    a0 — это нулевой коэффициент регрессии, который показывает значение Y(t), при отсутствии влияния объясняющего фактора (t=0);

    a1 — коэффициент регрессии, который показывает, на сколько исследуемый показатель продаж Y зависит от влияющего фактора t;

    E — случайные возмущения, которые отражают влияния других неучтенных в модели факторов, кроме времени t.

    Определение коэффициентов модели

    Строим график. По горизонтали видим отложенные месяцы, по вертикали объем продаж:

    В Google Sheets выбираем Редактор диаграмм -> Дополнительные и ставим галочку возле Линии тренда. В настройках выбираем ЯрлыкУравнение и Показать R^2.

    Если вы делаете все в MS Excel, то правой кнопкой мыши кликаем на график и в выпадающем меню выбираем «Добавить линию тренда».

    По умолчанию строится линейная функция. Справа выбираем «Показывать уравнение на диаграмме» и «Величину достоверности аппроксимации R^2».

    Вот, что получилось:

    На графике мы видим уравнение функции:

    y = 4856*x + 105104

    Она описывает объем продаж в зависимости от номера месяца, на который мы хотим эти продажи спрогнозировать. Рядом видим коэффициент детерминации R^2, который говорит о качестве модели и на сколько хорошо она описывает наши продажи (Y). Чем ближе к 1, тем лучше.

    У меня R^2 = 0,75. Это средний показатель, он говорит о том, что в модели не учтены какие-то другие значимые факторы помимо времени t, например, это может быть сезонность.

    Способ расчета значений линейного тренда в Excel с помощью графика

    Выделяем анализируемый объём продаж и строим график, где по оси Х — наш временной ряд (1, 2, 3… — январь, февраль, март …), по оси У – объёмы продаж. Добавляем линию тренда и уравнение тренда на график. Получаем уравнение тренда y=135134x+4594044

    Для прогнозирования нам необходимо рассчитать значения линейного тренда, как для анализируемых значений, так и для будущих периодов.
    При расчете значений линейного тренде нам будут известны:

    1. Время – значение по оси Х;
    2. Значение “a” и “b” уравнения линейного тренда y(x)=a+bx;

    Рассчитываем значения тренда для каждого периода времени от 1 до 25, а также для будущих периодов с 26 месяца до 36.
    Например, для 26 месяца значение тренда рассчитывается по следующей схеме: в уравнение подставляем x=26 и получаем y=135134*26+4594044=8107551

    27-го y=135134*27+4594044=8242686

    Способ расчета значений линейного тренда в Excel — функция ТЕНДЕНЦИЯ

    Рассчитаем значения линейного тренда с помощью стандартной функции Excel:

    =ТЕНДЕНЦИЯ(известные значения y; известные значения x; новые значения x; конста)

    Подставляем в формулу

    1. известные значения y – это объёмы продаж за анализируемый период (фиксируем диапазон в формуле, выделяем ссылку и нажимаем F4);
    2. известные значения x – это номера периодов x для известных значений объёмов продаж y;
    3. новые значения x – это номера периодов, для которых мы хотим рассчитать значения линейного тренда;
    4. константа – ставим 1, необходимо для того, чтобы значения тренда рассчитывались с учетом коэффицента (a) для линейного тренда y=a+bx;

    Для того чтобы рассчитать значения тренда для всего временного диапазона, в “новые значения x” вводим диапазон значений X, выделяем диапазон ячеек равный диапазону со значениями X с формулой в первой ячейке и нажимаем клавишу F2, а затем — клавиши CTRL + SHIFT + ВВОД.

    В предложенном выше примере была выбрана линейная аппроксимация только для иллюстрации алгоритма. Как показала величина достоверности, выбор был не совсем удачным.

    Следует выбирать тот тип отображения, который наиболее точно проиллюстрирует тенденцию изменений вводимых пользователем данных. Разберемся с вариантами.

    Линейная аппроксимация

    Ее геометрическое изображение – прямая. Следовательно, линейная аппроксимация применяется для иллюстрации показателя, который растет или уменьшается с постоянной скоростью.

    Рассмотрим условное количество заключенных менеджером контрактов на протяжении 10 месяцев:

    На основании данных в таблице Excel построим точечную диаграмму (она поможет проиллюстрировать линейный тип):

    Выделяем диаграмму – «добавить линию тренда». В параметрах выбираем линейный тип. Добавляем величину достоверности аппроксимации и уравнение линии тренда в Excel (достаточно просто поставить галочки внизу окна «Параметры»).

    Получаем результат:

    Обратите внимание! При линейном типе аппроксимации точки данных расположены максимально близко к прямой. Данный вид использует следующее уравнение:

    y = 4,503x + 6,1333

    • где 4,503 – показатель наклона;
    • 6,1333 – смещения;
    • y – последовательность значений,
    • х – номер периода.

    Прямая линия на графике отображает стабильный рост качества работы менеджера. Величина достоверности аппроксимации равняется 0,9929, что указывает на хорошее совпадение расчетной прямой с исходными данными. Прогнозы должны получиться точными.

    Чтобы спрогнозировать количество заключенных контрактов, например, в 11 периоде, нужно подставить в уравнение число 11 вместо х. В ходе расчетов узнаем, что в 11 периоде этот менеджер заключит 55-56 контрактов.

    Экспоненциальная линия тренда

    Данный тип будет полезен, если вводимые значения меняются с непрерывно возрастающей скоростью. Экспоненциальная аппроксимация не применяется при наличии нулевых или отрицательных характеристик.

    Построим экспоненциальную линию тренда в Excel. Возьмем для примера условные значения полезного отпуска электроэнергии в регионе Х:

    Строим график. Добавляем экспоненциальную линию.

    Уравнение имеет следующий вид:

    y = 7,6403е^-0,084x

    • где 7,6403 и -0,084 – константы;
    • е – основание натурального логарифма.

    Показатель величины достоверности аппроксимации составил 0,938 – кривая соответствует данным, ошибка минимальна, прогнозы будут точными.

    Логарифмическая линия тренда в Excel

    Используется при следующих изменениях показателя: сначала быстрый рост или убывание, потом – относительная стабильность. Оптимизированная кривая хорошо адаптируется к подобному «поведению» величины. Логарифмический тренд подходит для прогнозирования продаж нового товара, который только вводится на рынок.

    На начальном этапе задача производителя – увеличение клиентской базы. Когда у товара будет свой покупатель, его нужно удержать, обслужить.

    Построим график и добавим логарифмическую линию тренда для прогноза продаж условного продукта:

    R2 близок по значению к 1 (0,9633), что указывает на минимальную ошибку аппроксимации. Спрогнозируем объемы продаж в последующие периоды. Для этого нужно в уравнение вместо х подставлять номер периода.

    Например:

    Период 14 15 16 17 18 19 20
    Прогноз 1005,4 1024,18 1041,74 1058,24 1073,8 1088,51 1102,47

    Для расчета прогнозных цифр использовалась формула вида: =272,14*LN(B18)+287,21. Где В18 – номер периода.

    Общая информация

    Линия тренда – это инструмент статистического анализа, который позволяет спрогнозировать дальнейшее развитие событий. Чтобы построить кривую, необходимо иметь массив данных, который отображает изменение величины во времени. На основании этой информации строится график, а затем применятся специализированная функция. Рассмотрим изменение цены золота за грамм в долларах с 2015 по 2019 год.

    1. Составляете небольшую таблицу.

    1. На основании этих данных строите линейный график. Для этого переходите во вкладку Вставка на Панели инструментов и выбираете нужный тип диаграммы.

    1. Получается некоторая кривая.

    1. Необходимо отредактировать график при помощи стандартных инструментов, которые находятся во вкладках Конструктор, Макет и Формат. Переименовываете диаграмму, выставляете пределы по вертикальной оси, чтобы изменения величины были более явными, подписываете оси, добавляете контрольные точки, а также подпись данных. После этого проводите окончательное форматирование.

    1. Чтобы добавить линию тренда, необходимо во вкладке Макет нажать одноименную кнопку и выбрать нужный тип приближения.

    На заметку! Если линия тренда не активна, то используется не тот тип диаграммы. Данная функция работает только с диаграммами типа гистограмма, график, линейчатая и точечная.

    6. Так выглядит линия тренда на графике.

    На заметку! Построение линии приближения идентично для редакторов 2007, 2010 и 2016 годов выпуска.

    Возможности инструмента

    Рассмотрим подробнее настройки функции. Для перехода в окно параметров из выпадающего списка нужно выбрать последнюю строчку.

    Окно содержит четыре настройки, в которые входят цвет, объем и тип линии, а также параметры самого инструмента.

    Параметры линии тренда можно условно поделить на четыре блока:

    1. Тип приближения.
    2. Название полученной кривой, которое формируется автоматически или может быть задано пользователем.
    3. Блок прогнозирования, который позволяет продлить линию тренда на заданное количество периодов вперед или назад, на основании имеющихся данных. Что позволяет оценить дальнейшее изменение исследуемой величины.
    4. Дополнительные опции, которые отражают математическую составляющую кривой. Самой интересной и полезной строчкой здесь является величина достоверности. Если значение коэффициента близко к единице, то ошибка минимальна и дальнейший прогноз будет достаточно точным.

    Выведем на исходный график уравнение линии и коэффициент достоверности.

    Как видите, значение близко к 0,5, это говорит о низкой достоверности полученной линии тренда, и дальнейший прогноз будет ошибочным.

    Разновидности

    1 Линейная аппроксимация отлично подойдет для исследования величины, которая стабильно растет или убывает. Тогда кривая будет иметь вид прямой. Формула будет содержать одну переменную. Коэффициент достоверности близок к единице, что говорит о высокой точности совпадения прямой и массива данных. На основании такой линии тренда прогноз будет достаточно точным.

    2. Экспоненциальная кривая используется только для массивов с положительными значениями, которые изменяются непрерывно.

    3. Логарифмическую линию тренда целесообразнее использовать, если на первоначальном этапе наблюдается резкое увеличение или снижение показателя, а потом наступает период стабильности. Здесь формула содержит логарифм натуральный.

    4. Полиномиальная аппроксимация применяется при большом количестве неоднородных данных. В основе лежит степенное уравнение, при этом количество степеней зависит от числа максимумов. Применим этот тип для первоначального примера с золотом.

    Уравнение показывает переменные до третьей степени, поскольку график имеет два пика. Также видим, что коэффициент достоверности близок к единице (вместо 0,5 при линейной аппроксимации), значит линия тренда выбрана правильно и дальнейший прогноз будет точным.

    Как видите, для статистического анализа данных необходимо правильно выбрать тип математического уравнения, которое максимально точно будет соответствовать характеру изменения величины. На основании полученных кривых можно осуществлять прогноз, подставляя в уравнение необходимое число.

    Разбираемся с трендами в MS Excel

    Большой ошибкой со стороны владельца сайта будет воспринимать диаграмму как есть. Да, невооруженным взглядом видно, что синий и оранжевый столбики «осени» выросли по сравнению с «весной» и тем более «летом». Однако важны не только цифры и величина столбиков, но и зависимость между ними. То есть в идеале, при общем росте, «оранжевые» столбики просмотров должны расти намного сильнее «синих», что означало бы то, что сайт не только привлекает больше читателей, но и становится больше и интереснее.

    Что же мы видим на графике? Оранжевые столбики «осени» как минимум ни чем не больше «весенних», а то и меньше. Это свидетельствует не об успехе, а скорее наоборот — посетители прибывают, но читают в среднем меньше и на сайте не задерживаются!

    Самое время бить тревогу и… знакомится с такой штукой как линия тренда .

    Зачем нужна линия тренда

    Линия тренда «по-простому», это непрерывная линия составленная на основе усредненных на основе специальных алгоритмов значений из которых строится наша диаграмма. Иными словами, если наши данные «прыгают» за три отчетных точки с «-5» на «0», а следом на «+5», в итоге мы получим почти ровную линию: «плюсы» ситуации очевидно уравновешивают «минусы».

    Исходя из направления линии тренда гораздо проще увидеть реальное положение дел и видеть те самые тенденции, а следовательно — строить прогнозы на будущее. Ну а теперь, за дело!

    Как построить линию тренда в MS Excel

    Щелкните правой кнопкой мыши по одному из «синих» столбцов, и в контекстном меню выберите пункт «Добавить линию тренда» .

    На листе диаграммы теперь отображается пунктирная линия тренда. Как видите, она не совпадает на 100% со значениями диаграммы — построенная по средневзвешенным значениям, она лишь в общих чертах повторяет её направление. Однако это не мешает нам видеть устойчивый рост числа посещений сайта — на общем результате не сказывается даже «летняя» просадка.

    Линия тренда для столбца «Посетители»

    Теперь повторим тот же фокус с «оранжевыми» столбцами и построим вторую линию тренда. Как я и говорил раньше: здесь ситуация не так хороша. Тренд явно показывает, что за расчетный период число просмотров не только не увеличилось, но даже начало падать — медленно, но неуклонно.

    Ещё одна линия тренда позволяет прояснить ситуацию

    Мысленно продолжив линию тренда на будущие месяцы, мы придем к неутешительному выводу — число заинтересованных посетителей продолжит снижаться. Так как пользователи здесь не задерживаются, падение интереса сайта в ближайшем будущем неизбежно вызовет и падение посещаемости.

    Следовательно, владельцу проекта нужно срочно вспоминать чего он такого натворил летом («весной» все было вполне нормально, судя по графику), и срочно принимать меры по исправлению ситуации.

    Источники

    • https://strategy4you.ru/graficheskij-analiz/liniya-trenda-v-excel.html
    • https://thisisdata.ru/blog/postroyeniye-funktsiy-trenda-v-excel/
    • https://4analytics.ru/trendi/5-sposobov-rascheta-znacheniie-lineienogo-trenda-v-ms-excel.html
    • https://exceltable.com/grafiki/liniya-trenda-v-excel
    • https://mirtortov.ru/lineinyi-trend-v-eksel-liniya-trenda-v-excel-na-raznyh-grafikah.html
    • https://mir-tehnologiy.ru/liniya-trenda-v-excel/

    Понравилась статья? Поделить с друзьями:

    А вот еще интересные статьи:

  • Excel линия тренда где найти
  • Excel лист персонажа днд
  • Excel линию по диагонали
  • Excel лист не на всю область
  • Excel линии проекции на графике

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии